Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.273
Filtrar
2.
Pol Merkur Lekarski ; 52(2): 178-188, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38642353

RESUMO

OBJECTIVE: Aim: To evaluate the cytotoxic activity of newly synthesized a series of novel HDAC inhibitors comprising sulfonamide as zinc binding group and Isatin derivatives as cap group joined by mono amide linker as required to act as HDAC inhibitors. PATIENTS AND METHODS: Materials and Methods: The utilization of sulfonamide as zinc binding group joined by N-alkylation reaction with ethyl-bromo hexanoate as linker group that joined by amide reaction with Isatin derivatives as cap groups which known to possess antitumor activity in the designed of new histone deacetylase inhibitors and using the docking and MTT assay to evaluate the compounds. RESULTS: Results: Four compounds have been synthesized and characterized successfully by ART-FTIR, NMR and ESI-Ms. the compounds were synthesized and characterized by successfully by ART-FTIR, NMR and ESI- Ms. Assessed for their cytotoxic activity against human colon adenocarcinoma MCF-7 (IC50, I=105.15, II=60.00, III=54.11, IV=56.57, vorinostat=28.41) and hepatoblastoma HepG2 (IC50, I=63.91, II=135.18, III=118.85, IV=51.46, vorinostat=37.50). Most of them exhibited potent HDAC inhibitory activity and significant cytotoxicity. CONCLUSION: Conclusions: The synthesized compounds (I, II, III and IV) showed cytotoxicity toward MCF-7 and HepG2 cancer cell lines and their docking analysis provided a preliminary indication that they are viable [HDAC6] candidates.


Assuntos
Adenocarcinoma , Antineoplásicos , Neoplasias do Colo , Isatina , Humanos , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/química , Vorinostat/farmacologia , Isatina/farmacologia , Linhagem Celular Tumoral , Amidas/farmacologia , Desenho de Fármacos , Antineoplásicos/farmacologia , Sulfonamidas/farmacologia , Zinco/metabolismo , Zinco/farmacologia , Proliferação de Células , Estrutura Molecular
3.
Bioorg Med Chem ; 104: 117680, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38582047

RESUMO

Many disease states require multiple drugs to inhibit multiple targets for their effective treatment/management, i.e. a drug cocktail regimen, or "polypharmacy". Polypharmacology, in contrast, is the development of single agents that can inhibit multiple targets. Each strategy is associated with advantages and disadvantages. Motivated by promising clinical trial data for the treatment of multiple myeloma with the combination of the HDAC6 inhibitor ricolinostat and the proteasome inhibitor bortezomib, we herein describe a focused family of dual HDAC/non-covalent proteasome inhibitors, and explore the impact of linker and zinc-binding group identities on HDAC1/6 isozyme selectivity. In general, previously reported specificity determinants of monovalent HDAC1/6 inhibitors were preserved in our dual HDAC/proteasome inhibitors.


Assuntos
Inibidores de Histona Desacetilases , Inibidores de Proteassoma , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Proteassoma/farmacologia , Complexo de Endopeptidases do Proteassoma , Bortezomib , Histona Desacetilases , Desacetilase 6 de Histona , Histona Desacetilase 1
4.
Biochem Biophys Res Commun ; 710: 149872, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38593621

RESUMO

Protein modifications importantly contribute to memory formation. Protein acetylation is a post-translational modification of proteins that regulates memory formation. Acetylation level is determined by the relative activities of acetylases and deacetylases. Crebinostat is a histone deacetylase inhibitor. Here we show that in an object recognition task, crebinostat facilitates memory formation by a weak training. Further, this compound enhances acetylation of α-tubulin, and reduces the level of histone deacetylase 6, an α-tubulin deacetylase. The results suggest that enhanced acetylation of α-tubulin by crebinostat contributes to its facilitatory effect on memory formation.


Assuntos
Histona Desacetilases , Tubulina (Proteína) , Tubulina (Proteína)/metabolismo , Histona Desacetilases/metabolismo , Desacetilase 6 de Histona/metabolismo , Compostos de Bifenilo , Hidrazinas , Inibidores de Histona Desacetilases/farmacologia , Acetilação
5.
PLoS One ; 19(4): e0302374, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38635564

RESUMO

While chronic stress induces learning and memory impairments, acute stress may facilitate or prevent memory consolidation depending on whether it occurs during the learning event or before it, respectively. On the other hand, it has been shown that histone acetylation regulates long-term memory formation. This study aimed to evaluate the effect of two inhibitors of class I histone deacetylases (HDACs), 4-phenylbutyrate (PB) and IN14 (100 mg/kg/day, ip for 2 days), on memory performance in mice exposed to a single 15-min forced swimming stress session. Plasma corticosterone levels were determined 30 minutes after acute swim stress in one group of mice. In another experimental series, independent groups of mice were trained in one of three different memory tasks: Object recognition test, Elevated T maze, and Buried food location test. Subsequently, the hippocampi were removed to perform ELISA assays for histone deacetylase 2 (HDAC2) expression. Acute stress induced an increase in plasma corticosterone levels, as well as hippocampal HDAC2 content, along with an impaired performance in memory tests. Moreover, PB and IN14 treatment prevented memory loss in stressed mice. These findings suggest that HDAC2 is involved in acute stress-induced cognitive impairment. None of the drugs improved memory in non-stressed animals, indicating that HDACs inhibitors are not cognitive boosters, but rather potentially useful drugs for mitigating memory deficits.


Assuntos
Corticosterona , Histona Desacetilases , Camundongos , Animais , Histona Desacetilases/metabolismo , Corticosterona/metabolismo , Aprendizagem , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/etiologia , Transtornos da Memória/metabolismo , Memória de Longo Prazo , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Inibidores de Histona Desacetilases/metabolismo , Hipocampo/metabolismo
6.
Acta Neuropathol Commun ; 12(1): 61, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637883

RESUMO

We aimed to identify the druggable cell-intrinsic vulnerabilities and target-based drug therapies for PitNETs using the high-throughput drug screening (HTS) and genomic sequencing methods. We examined 9 patient-derived PitNET primary cells in HTS. Based on the screening results, the potential target genes were analyzed with genomic sequencing from a total of 180 PitNETs. We identified and verified one of the most potentially effective drugs, which targeted the Histone deacetylases (HDACs) both in in vitro and in vivo PitNET models. Further RNA sequencing revealed underlying molecular mechanisms following treatment with the representative HDACs inhibitor, Panobinostat. The HTS generated a total of 20,736 single-agent dose responses which were enriched among multiple inhibitors for various oncogenic targets, including HDACs, PI3K, mTOR, and proteasome. Among these drugs, HDAC inhibitors (HDACIs) were, on average, the most potent drug class. Further studies using in vitro, in vivo, and isolated PitNET primary cell models validated HDACIs, especially Panobinostat, as a promising therapeutic agent. Transcriptional surveys revealed substantial alterations to the Nrf2 signaling following Panobinostat treatment. Moreover, Nrf2 is highly expressed in PitNETs. The combination of Panobinostat and Nrf2 inhibitor ML385 had a synergistic effect on PitNET suppression. The current study revealed a class of effective anti-PitNET drugs, HDACIs, based on the HTS and genomic sequencing. One of the representative compounds, Panobinostat, may be a potential drug for PitNET treatment via Nrf2-mediated redox modulation. Combination of Panobinostat and ML385 further enhance the effectiveness for PitNET treatment.


Assuntos
Tumores Neuroendócrinos , Neoplasias Hipofisárias , Humanos , Panobinostat/farmacologia , Panobinostat/uso terapêutico , Fator 2 Relacionado a NF-E2/genética , Tumores Neuroendócrinos/tratamento farmacológico , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Transdução de Sinais
7.
PLoS One ; 19(4): e0299198, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38635661

RESUMO

Herpesviruses have two distinct life cycle stages, latency and lytic replication. Epstein-Barr virus (EBV), a gamma-herpesvirus, establishes latency in vivo and in cultured cells. Cell lines harboring latent EBV can be induced into the lytic cycle by treatment with chemical inducing agents. In the Burkitt lymphoma cell line HH514-16 the viral lytic cycle is triggered by butyrate, a histone deacetylase (HDAC) inhibitor. Butyrate also alters expression of thousands of cellular genes. However, valproic acid (VPA), another HDAC inhibitor with global effects on cellular gene expression blocks EBV lytic gene expression in Burkitt lymphoma cell lines. Valpromide (VPM), an amide derivative of VPA, is not an HDAC inhibitor, but like VPA blocks induction of the EBV lytic cycle. VPA and VPM are the first examples of inhibitors of initial stages of lytic reactivation. We compared the effects of VPA and VPM, alone and in combination with butyrate, on host cellular gene expression using whole transcriptome analysis (RNA-seq). Gene expression was analyzed 6 h after addition of the compounds, a time before the first EBV lytic transcripts are detected. The results address two alternative, yet possibly complementary, mechanisms for regulation of EBV lytic reactivation. First, cellular genes that were up- or down-regulated by butyrate, but no longer altered in the presence of VPA or VPM, represent genes that correlated with EBV lytic reactivation. Second, genes regulated similarly by VPA and VPM in the absence and presence of butyrate are candidates for suppressors of EBV reactivation. Two genes upregulated by the lytic cycle inhibitors, CHAC1 and SLC7A11, are related to redox status and the iron-dependent cell death pathway ferroptosis. This study generates new hypotheses for control of the latency to lytic cycle switch of EBV and provides the first description of effects of the anti-convulsant drug VPM on global human cellular gene expression.


Assuntos
Linfoma de Burkitt , Infecções por Vírus Epstein-Barr , Ácido Valproico/análogos & derivados , Humanos , Linfoma de Burkitt/tratamento farmacológico , Linfoma de Burkitt/genética , Herpesvirus Humano 4/fisiologia , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/metabolismo , Infecções por Vírus Epstein-Barr/tratamento farmacológico , Ativação Viral , Perfilação da Expressão Gênica , Butiratos/farmacologia
8.
Eur J Med Chem ; 268: 116301, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38452727

RESUMO

In this work, a novel of dual tubulin/HDAC inhibitors were designed and synthesized based on the structure of natural product millepachine, which has been identified as a tubulin polymerization inhibitor. Biological evaluation revealed that compound 9n exhibited an impressive potency against PC-3 cells with the IC50 value of 16 nM and effectively inhibited both microtubule polymerization and HDAC activity. Furthermore, compound 9n not only induced cell cycle arrest at G2/M phase, but also induced PC- 3 cells apoptosis. Further study revealed that the induction of cell apoptosis by 9n was accompanied by a decrease in mitochondrial membrane potential and an elevation in reactive oxygen species levels in PC-3 cells. Additionally, 9n exhibited inhibitory effects on tumor cell migration and angiogenesis. In PC-3 xenograft model, 9n achieved a remarkable tumor inhibition rate of 90.07%@20 mg/kg, significantly surpassing to that of CA-4 (55.62%@20 mg/kg). Meanwhile, 9n exhibited the favorable drug metabolism characteristics in vivo. All the results indicate that 9n is a promising dual tubulin/HDAC inhibitor for chemotherapy of prostate cancer, deserving the further investigation.


Assuntos
Antineoplásicos , Chalconas , Neoplasias da Próstata , Masculino , Humanos , Moduladores de Tubulina/farmacologia , Moduladores de Tubulina/uso terapêutico , Moduladores de Tubulina/química , Inibidores de Histona Desacetilases/farmacologia , Linhagem Celular Tumoral , Relação Estrutura-Atividade , Tubulina (Proteína)/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Ensaios de Seleção de Medicamentos Antitumorais , Proliferação de Células , Neoplasias da Próstata/tratamento farmacológico , Apoptose
9.
Molecules ; 29(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38474606

RESUMO

Metalloenzymes are ubiquitously present in the human body and are relevant to a variety of diseases. However, the development of metalloenzyme inhibitors is limited by low specificity and poor drug-likeness associated with metal-binding fragments (MBFs). A generalized drug discovery strategy was established, which is characterized by the property characterization of zinc-dependent metalloenzyme inhibitors (ZnMIs). Fifteen potential Zn2+-binding fragments (ZnBFs) were identified, and a customized pharmacophore feature was defined based on these ZnBFs. The customized feature was set as a required feature and applied to a search for novel inhibitors for histone deacetylase 1 (HDAC1). Ten potential HDAC1 inhibitors were recognized, and one of them (compound 9) was a known potent HDAC1 inhibitor. The results demonstrated the effectiveness of our strategy to identify novel inhibitors for zinc-dependent metalloenzymes.


Assuntos
Inibidores de Histona Desacetilases , Metaloproteínas , Humanos , Inibidores de Histona Desacetilases/farmacologia , Metaloproteínas/química , Descoberta de Drogas , Zinco , Histona Desacetilase 1
10.
Acc Chem Res ; 57(8): 1135-1148, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38530703

RESUMO

ConspectusThe zinc-dependent histone deacetylases (HDACs 1-11) belong to the arginase-deacetylase superfamily of proteins, members of which share a common α/ß fold and catalytic metal binding site. While several HDACs play a role in epigenetic regulation by catalyzing acetyllysine hydrolysis in histone proteins, the biological activities of HDACs extend far beyond histones. HDACs also deacetylate nonhistone proteins in the nucleus as well as the cytosol to regulate myriad cellular processes. The substrate pool is even more diverse in that certain HDACs can hydrolyze other covalent modifications. For example, HDAC6 is also a lysine decrotonylase, and HDAC11 is a lysine-fatty acid deacylase. Surprisingly, HDAC10 is not a lysine deacetylase but instead is a polyamine deacetylase. Thus, the HDACs are biologically and chemically versatile catalysts as they regulate the function of diverse protein and nonprotein substrates throughout the cell.Owing to their critical regulatory functions, HDACs serve as prominent targets for drug design. At present, four HDAC inhibitors are FDA-approved for cancer chemotherapy. However, these inhibitors are active against multiple HDAC isozymes, and a lack of selectivity is thought to contribute to undesirable side effects. Current medicinal chemistry campaigns focus on the development of isozyme-selective inhibitors, and many such studies largely focus on HDAC6 and HDAC10. HDAC6 is a target for therapeutic intervention due to its cellular role as a tubulin deacetylase and tau deacetylase, and selective inhibitors are being studied in cancer chemotherapy and the treatment of peripheral neuropathy. Crystal structures of enzyme-inhibitor complexes reveal how various features of inhibitor design, such as zinc-coordinating groups, bifurcated capping groups, and aromatic fluorination patterns, contribute to affinity and isozyme selectivity. The polyamine deacetylase HDAC10 is also an emerging target for cancer chemotherapy. Crystal structures of intact substrates trapped in the HDAC10 active site reveal the molecular basis of strikingly narrow substrate specificity for N8-acetylspermidine hydrolysis. Active site features responsible for substrate specificity have been successfully exploited in the design of potent and selective inhibitors.In this Account, I review the structural chemistry and inhibition of HDACs, highlighting recent X-ray crystallographic and functional studies of HDAC6 and HDAC10 in my laboratory. These studies have yielded fascinating snapshots of catalysis as well as novel chemical transformations involving bound inhibitors. The zinc-bound water molecule in the HDAC active site is the catalytic nucleophile in the deacetylation reaction, but this activated water molecule can also react with inhibitor C═O or C═N groups to yield unanticipated reaction products that bind exceptionally tightly. Versatile active site chemistry unleashes the full inhibitory potential of such compounds, and X-ray crystallography allows us to view this chemistry in action.


Assuntos
Lisina , Neoplasias , Humanos , Epigênese Genética , Isoenzimas/metabolismo , Histona Desacetilases/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/metabolismo , Poliaminas/química , Catálise , Histonas/metabolismo , Zinco/química , Água/metabolismo
11.
BMC Cancer ; 24(1): 335, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38475728

RESUMO

BACKGROUND: The development of drug resistance is a major cause of cancer therapy failures. To inhibit drug resistance, multiple drugs are often treated together as a combinatorial therapy. In particular, synergistic drug combinations, which kill cancer cells at a lower concentration, guarantee a better prognosis and fewer side effects in cancer patients. Many studies have sought out synergistic combinations by small-scale function-based targeted growth assays or large-scale nontargeted growth assays, but their discoveries are always challenging due to technical problems such as a large number of possible test combinations. METHODS: To address this issue, we carried out a medium-scale optical drug synergy screening in a non-small cell lung cancer cell line and further investigated individual drug interactions in combination drug responses by high-content image analysis. Optical high-content analysis of cellular responses has recently attracted much interest in the field of drug discovery, functional genomics, and toxicology. Here, we adopted a similar approach to study combinatorial drug responses. RESULTS: By examining all possible combinations of 12 drug compounds in 6 different drug classes, such as mTOR inhibitors, HDAC inhibitors, HSP90 inhibitors, MT inhibitors, DNA inhibitors, and proteasome inhibitors, we successfully identified synergism between INK128, an mTOR inhibitor, and HDAC inhibitors, which has also been reported elsewhere. Our high-content analysis further showed that HDAC inhibitors, HSP90 inhibitors, and proteasome inhibitors played a dominant role in combinatorial drug responses when they were mixed with MT inhibitors, DNA inhibitors, or mTOR inhibitors, suggesting that recessive drugs could be less prioritized as components of multidrug cocktails. CONCLUSIONS: In conclusion, our optical drug screening platform efficiently identified synergistic drug combinations in a non-small cell lung cancer cell line, and our high-content analysis further revealed how individual drugs in the drug mix interact with each other to generate combinatorial drug response.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Inibidores de Histona Desacetilases/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Inibidores de MTOR , Linhagem Celular Tumoral , Inibidores de Proteassoma/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Antineoplásicos/uso terapêutico , Pirimidinas/uso terapêutico , Serina-Treonina Quinases TOR/metabolismo , Combinação de Medicamentos , DNA/uso terapêutico , Sinergismo Farmacológico
12.
Parasite Immunol ; 46(3): e13032, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38497997

RESUMO

Cryptosporidium is an opportunistic protozoan, with many species of cross-human infectivity. It causes life-threatening diarrhoea in children and CD4-defective patients. Despite its limited efficacy, nitazoxanide remains the primary anti-cryptosporidial drug. Cryptosporidium infects the intestinal brush border (intracellular-extracytoplasmic) and down-regulates pyroptosis to prevent expulsion. Romidepsin is a natural histone deacetylase inhibitor that triggers pyroptosis. Romidepsin's effect on cryptosporidiosis was assessed in immunocompromised mice via gasdermin-D (GSDM-D) immunohistochemical expression, IFN-γ, IL-1ß and IL-18 blood levels by ELISA, and via parasite scanning by modified Ziehl-Neelsen staining and scanning electron microscopy (SEM). Oocyst deformity and local cytokines were also assessed in ex vivo ileal explants. Following intraperitoneal injection of romidepsin, oocyst shedding significantly reduced at the 9th, 12th and 15th d.p.i. compared with infected-control and drug-control (nitazoxanide-treated) mice. H&E staining of intestinal sections from romidepsin-treated mice showed significantly low intestinal scoring with marked reduction in epithelial hyperplasia, villous blunting and cellular infiltrate. SEM revealed marked oocyst blebbing and paucity (in vivo and ex vivo) after romidepsin compared with nitazoxanide. Regarding pyroptosis, romidepsin triggered significantly higher intestinal GSDM-D expression in vivo, and higher serum/culture IFN-γ, IL-1ß and IL-18 levels in romidepsin-treated mice than in the control groups. Collectively, in cryptosporidiosis, romidepsin succeeded in enhancing pyroptosis in the oocysts and infected epithelium, reducing infection and shifting the brush border towards normalisation.


Assuntos
Criptosporidiose , Cryptosporidium , Depsipeptídeos , Nitrocompostos , Tiazóis , Criança , Humanos , Animais , Camundongos , Criptosporidiose/tratamento farmacológico , Inibidores de Histona Desacetilases/farmacologia , Interleucina-18 , Piroptose
13.
J Enzyme Inhib Med Chem ; 39(1): 2318645, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38465731

RESUMO

A series of novel benzimidazole derivatives were designed and synthesised based on the structures of reported oral available ALK inhibitor and HDAC inhibitor, pracinostat. In enzymatic assays, compound 3b, containing a 2-acyliminobenzimidazole moiety and hydroxamic acid side chain, could inhibit both ALK and HDAC6 (IC50 = 16 nM and 1.03 µM, respectively). Compound 3b also inhibited various ALK mutants known to be involved in crizotinib resistance, including mutant L1196M (IC50, 4.9 nM). Moreover, 3b inhibited the proliferation of several cancer cell lines, including ALK-addicted H2228 cells. To evaluate its potential for treating cancers in vivo, 3b was used in a human A549 xenograft model with BALB/c nude mice. At 20 mg/kg, 3b inhibited tumour growth by 85% yet had a negligible effect on mean body weight. These results suggest a attracting route for the further research and optimisation of dual ALK/HDAC inhibitors.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Camundongos , Animais , Humanos , Quinase do Linfoma Anaplásico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Camundongos Nus , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Proliferação de Células , Inibidores de Proteínas Quinases/química , Antineoplásicos/química , Linhagem Celular Tumoral
14.
Int J Mol Sci ; 25(5)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38473789

RESUMO

In the adult mammalian brain, neurons are produced from neural stem cells (NSCs) residing in two niches-the subventricular zone (SVZ), which forms the lining of the lateral ventricles, and the subgranular zone in the hippocampus. Epigenetic mechanisms contribute to maintaining distinct cell fates by suppressing gene expression that is required for deciding alternate cell fates. Several histone deacetylase (HDAC) inhibitors can affect adult neurogenesis in vivo. However, data regarding the role of specific HDACs in cell fate decisions remain limited. Herein, we demonstrate that HDAC8 participates in the regulation of the proliferation and differentiation of NSCs/neural progenitor cells (NPCs) in the adult mouse SVZ. Specific knockout of Hdac8 in NSCs/NPCs inhibited proliferation and neural differentiation. Treatment with the selective HDAC8 inhibitor PCI-34051 reduced the neurosphere size in cultures from the SVZ of adult mice. Further transcriptional datasets revealed that HDAC8 inhibition in adult SVZ cells disturbs biological processes, transcription factor networks, and key regulatory pathways. HDAC8 inhibition in adult SVZ neurospheres upregulated the cytokine-mediated signaling and downregulated the cell cycle pathway. In conclusion, HDAC8 participates in the regulation of in vivo proliferation and differentiation of NSCs/NPCs in the adult SVZ, which provides insights into the underlying molecular mechanisms.


Assuntos
Células-Tronco Adultas , Células-Tronco Neurais , Intervenção Coronária Percutânea , Animais , Camundongos , Ventrículos Laterais , Inibidores de Histona Desacetilases , Proliferação de Células , Mamíferos
15.
Future Med Chem ; 16(7): 601-622, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38436113

RESUMO

Aim: The purpose of this work is to create and synthesize a new class of chemicals: 3-cyano-2-substituted pyridine compounds with expected multitarget inhibition of histone deacetylase (HDAC) and tubulin. Materials & methods: The target compounds (3a-c, 4a-c and 5a-c) were synthesized utilizing 6-(4-methoxyphenyl)-2-oxo-4-(3,4,5-trimethoxyphenyl)-3-cyanopyridine, with various linkers and zinc-binding groups (ZBGs). Results: Most of the tested compounds showed promising growth inhibition, and hydroxamic acid-containing hybrids possessed higher HDAC inhibition than other ZBGs. Compound 4b possessed the highest potency; however, it showed the most tubulin polymerization inhibition. Docking studies displayed good binding into HDAC1 and six pockets and tubulin polymerization protein. Conclusion: Compound 4b could be considered a good antitumor candidate to go further into in vivo and clinical studies.


Assuntos
Antineoplásicos , Inibidores de Histona Desacetilases , Inibidores de Histona Desacetilases/química , Tubulina (Proteína)/metabolismo , Relação Estrutura-Atividade , Moduladores de Tubulina/farmacologia , Moduladores de Tubulina/química , Antineoplásicos/química , Histona Desacetilases/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais
16.
Cell Commun Signal ; 22(1): 160, 2024 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-38439009

RESUMO

BACKGROUND: Estrogen deficiency-mediated hyperactive osteoclast represents the leading role during the onset of postmenopausal osteoporosis. The activation of a series of signaling cascades triggered by RANKL-RANK interaction is crucial mechanism underlying osteoclastogenesis. Vorinostat (SAHA) is a broad-spectrum pan-histone deacetylase inhibitor (HDACi) and its effect on osteoporosis remains elusive. METHODS: The effects of SAHA on osteoclast maturation and bone resorptive activity were evaluated using in vitro osteoclastogenesis assay. To investigate the effect of SAHA on the osteoclast gene networks during osteoclast differentiation, we performed high-throughput transcriptome sequencing. Molecular docking and the assessment of RANKL-induced signaling cascades were conducted to confirm the underlying regulatory mechanism of SAHA on the action of RANKL-activated osteoclasts. Finally, we took advantage of a mouse model of estrogen-deficient osteoporosis to explore the clinical potential of SAHA. RESULTS: We showed here that SAHA suppressed RANKL-induced osteoclast differentiation concentration-dependently and disrupted osteoclastic bone resorption in vitro. Mechanistically, SAHA specifically bound to the predicted binding site of RANKL and blunt the interaction between RANKL and RANK. Then, by interfering with downstream NF-κB and MAPK signaling pathway activation, SAHA negatively regulated the activity of NFATc1, thus resulting in a significant reduction of osteoclast-specific gene transcripts and functional osteoclast-related protein expression. Moreover, we found a significant anti-osteoporotic role of SAHA in ovariectomized mice, which was probably realized through the inhibition of osteoclast formation and hyperactivation. CONCLUSION: These data reveal a high affinity between SAHA and RANKL, which results in blockade of RANKL-RANK interaction and thereby interferes with RANKL-induced signaling cascades and osteoclastic bone resorption, supporting a novel strategy for SAHA application as a promising therapeutic agent for osteoporosis.


Assuntos
Reabsorção Óssea , Osteoporose , Feminino , Animais , Camundongos , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Vorinostat/farmacologia , Vorinostat/uso terapêutico , Simulação de Acoplamento Molecular , Reabsorção Óssea/tratamento farmacológico , Transdução de Sinais , Osteoporose/tratamento farmacológico , Osteoporose/etiologia , Estrogênios
17.
Drug Dev Res ; 85(2): e22172, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38488434

RESUMO

Epigenetic modifications play a significant role in cancer progression, making them potential targets for therapy. Histone deacetylase inhibitors have shown promise in inhibiting cancer cell growth, including in breast cancer (BC). In this research, we examined the potential of using suberoyl anilide hydroxamic acid (SAHA)-loaded ß-lg nanofibrils as a drug delivery system for triple-negative BC cell lines. We assessed their impact on cell cycle progression, apoptosis, levels of reactive oxygen species, and mitochondrial membrane potential in cancer cells. The combination of SAHA and ß-lg nanofibrils demonstrated enhanced efficacy in inhibiting cell growth, inducing cell cycle arrest, and promoting apoptosis (43.78%) compared to SAHA alone (40.09%). Moreover, it effectively targeted cancer cells without promoting drug resistance while using a low concentration of the nanofibrils. These findings underscore the promising potential of nanofibril-based drug delivery systems for BC treatment.


Assuntos
Antineoplásicos , Neoplasias da Mama , Humanos , Feminino , Inibidores de Histona Desacetilases/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Ácidos Hidroxâmicos/farmacologia , Vorinostat/farmacologia , Vorinostat/uso terapêutico , Ciclo Celular , Apoptose , Proliferação de Células , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
18.
Biomed Pharmacother ; 173: 116374, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38447451

RESUMO

Here we present the generation and characterization of patient-derived organoids (PDOs) from colorectal cancer patients. PDOs derived from two patients with TP53 mutations were tested with two different HDAC inhibitors (SAHA and NKL54). Cell death induction, transcriptome, and chromatin accessibility changes were analyzed. HDACIs promote the upregulation of low expressed genes and the downregulation of highly expressed genes. A similar differential effect is observed at the level of chromatin accessibility. Only SAHA is a potent inducer of cell death, which is characterized by the upregulation of BH3-only genes BIK and BMF. Up-regulation of BIK is associated with increased accessibility in an intronic region that has enhancer properties. SAHA, but not NKL54, also causes downregulation of BCL2L1 and decreases chromatin accessibility in three distinct regions of the BCL2L1 locus. Both inhibitors upregulate the expression of innate immunity genes and members of the MHC family. In summary, our exploratory study indicates a mechanism of action for SAHA and demonstrate the low efficacy of NKL54 as a single agent for apoptosis induction, using two PDOs. These observations need to be validated in a larger cohort of PDOs.


Assuntos
Neoplasias do Colo , Inibidores de Histona Desacetilases , Humanos , Inibidores de Histona Desacetilases/farmacologia , Cromatina/genética , Ácidos Hidroxâmicos/farmacologia , Apoptose/genética , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genética , Linhagem Celular Tumoral , Proteína Supressora de Tumor p53/genética
19.
Anal Chem ; 96(12): 4817-4824, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38482584

RESUMO

Protein acetylation, a fundamental post-translational modification, plays a critical role in the regulation of gene expression and cellular processes. Monitoring histone deacetylases (HDACs) is important for understanding epigenetic dynamics and advancing the early diagnosis of malignancies. Here, we leverage the dynamic characteristics of DNA-peptide interactions in biomimetic nanochannels to develop a HDAC detection method. In specific, the catalysis of peptide deacetylation by HDACs triggers alterations in the charge states of the nanochannel surface to accommodate DNA molecules. Then, the interaction between DNA and peptides shifts the nanochannel surface charge from positive to negative, leading to a reversal of the ion current rectification (ICR). By calculation of the ICR ratio, quantitative detection of HDACs can be efficiently achieved using the nanochannel-based method in an enzyme-free and label-free manner. Our experimental results demonstrate that HDACs can be detected by using this method within a concentration range of 0.5-500 nM. The innate simplicity and efficiency of this strategy may render it a valuable tool for advancing both fundamental research and clinical applications in the realm of epigenetics and personalized medicine.


Assuntos
Biomimética , Histona Desacetilases , Histona Desacetilases/metabolismo , DNA/metabolismo , Peptídeos/metabolismo , Epigênese Genética , Acetilação , Inibidores de Histona Desacetilases
20.
J Med Chem ; 67(6): 4950-4976, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38456618

RESUMO

Histone deacetylases (HDACs) inhibitors such as vorinostat (SAHA) has been used to treat hematologic malignancies (rather than solid tumors) and have been found to suppress the JAK/STAT, a critical signal pathway for antitumor immunity, while PARP7 inhibitor RBN-2397 could activate the type I interferons (IFN-I) pathway, facilitating downstream effects such as STAT1 phosphorylation and immune activation. To elucidate whether simultaneous inhibition of these two targets could interfere with these two signal pathways, a series of pyridazinone-based PARP7/HDACs dual inhibitors have been designed, synthesized, and evaluated in vitro and in vivo experiments. Compound 9l was identified as a potent and balanced dual inhibitor for the first time, exhibiting excellent antitumor capabilities both in vitro and in vivo. This suggests that 9l can be used as a valuable tool molecule for investigating the relationship between anticancer immunity and HDAC inhibition.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Vorinostat/farmacologia , Relação Estrutura-Atividade , Neoplasias/tratamento farmacológico , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Proliferação de Células
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...